您现在的位置是:首页 > 综合资讯 >正文
今日勾股定理16种证明法(勾股定理16种证明方法)
发布时间:2022-08-12 20:50:14郎宽彦来源:
大家好,小常来为大家解答以上问题。勾股定理16种证明法,勾股定理16种证明方法很多人还不知道,现在让我们一起来看看吧!
1、【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a²+b²+4x1/2ab=c²+4x1/2ab, 整理得a²+b²=c²。
2、【证法2】(邹元治证明)以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角1ab2形的面积等于. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o.∴ 四边形EFGH是一个边长为c的正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE,∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90o,∴ ∠EHA + ∠GHD = 90o.又∵ ∠GHE = 90o,∴ ∠DHA = 90o+ 90o= 180o.∴ ABCD是一个边长为a + b的正方形,它的面积等于(a+b)².∴(a+b)²=4x1/2ab+c²∴ a²+b²=c²。
3、【证法3】(赵爽证明)以a、b 为直角边(b>a), 以c为斜 边作四个全等的直角三角形,则每个直角 1ab2三角形的面积等于. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90o,∴ ∠EAB + ∠HAD = 90o, 2∴ ABCD是一个边长为c的正方形,它的面积等于c.∵ EF = FG =GH =HE = b―a ,∠HEF = 90o.∴ EFGH是一个边长为b―a的正方形,它的面积等于(b-a)².∴(b-a)²=4x1/2ab+c²∴ a²+b²=c²。
4、【证法4】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角1ab形的面积等于2. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o.∴ ∠DEC = 180o―90o= 90o. ∴ ΔDEC是一个等腰直角三角形, 12c2它的面积等于.又∵ ∠DAE = 90o, ∠EBC = 90o,∴ AD∥BC.∴ ABCD是一个直角梯形,它的面积等于1/2(a+b)².∴1/2(a+b)²=2x1/2ab+1/2c²∴ a²+b²=c²。
5、【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,∴ ∠EGF = ∠BED,∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180o―90o= 90o. 又∵ AB = BE = EG = GA = c,∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 90o.∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90o. 即 ∠CBD= 90o. 又∵ ∠BDE = 90o,∠BCP = 90o, BC = BD = a.∴ BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则a²+b²=S+2x1/2ab,c²=S+2x1/2ab∴a²+b²=c².证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90o,QP∥BC, ∴ ∠MPC = 90o, ∵ BM⊥PQ, ∴ ∠BMP = 90o, ∴ BCPM是一个矩形,即∠MBC = 90o. ∵ ∠QBM + ∠MBA = ∠QBA = 90o,∠ABC + ∠MBA = ∠MBC = 90o, ∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90o,∠BCA = 90o,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结 BF、CD. 过C作CL⊥DE,交AB于点M,交DE于点L. K∵ AF = AC,AB = AD, ∠FAB = ∠GAD, ∴ ΔFAB ≌ ΔGAD, 12a∵ ΔFAB的面积等于2,ΔGAD的面积等于矩形ADLM的面积的一半, ∴ 矩形ADLM的面积 =a²同理可证,矩形MLEB的面积 =b².∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积∴ c²=a²+b² 。
6、【证法8】(利用相似三角形性质证明)如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.在ΔADC和ΔACB中, ∵ ∠ADC = ∠ACB = 90o,∠CAD = ∠BAC, ∴ ΔADC ∽ ΔACB.AD∶AC = AC ∶AB,即 AC²=ADXAB.同理可证,ΔCDB ∽ ΔACB,从而有 BC²=BDxAB.∴ AC²+BC²=(AD+DB)xAB=AB²,即 a²+b²=c²、【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H. ∵ ∠BAD = 90o,∠PAC = 90o,∴ ∠DAH = ∠BAC. 又∵ ∠DHA = 90o,∠BCA = 90o, AD = AB = c, ∴ RtΔDHA ≌ RtΔBCA.∴ DH = BC = a,AH = AC = b由作法可知, PBCA 是一个矩形,所以 RtΔAPB ≌ RtΔBCA. 即PB =CA = b,AP= a,从而PH = b―a.∵ RtΔDGT ≌ RtΔBCA ,RtΔDHA ≌ RtΔBCA.∴ RtΔDGT ≌ RtΔDHA .∴ DH = DG = a,∠GDT = ∠HDA .又∵ ∠DGT = 90o,∠DHF = 90o,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90o,∴ DGFH是一个边长为a的正方形.∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a .∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a). 用数字表示面积的编号(如图),则以c为边长的正方形的面积为c²=S₁+S₂+S₃+S₄+S₅ ① ∵ S₈+S₃+S₄=1/2[b+(b-a)]x[a+(b-a)]=b²-1/2abS₅=S₉+S₈∴S₃+S₄=b²-1/2ab-S=b²-S₁-S₃ ②把②代入①,得 C²=S₁+S₂+b²-S₁-S₈+S₈+S₉ =b²+S₂+S₉=b²+a²∴ a²+b²=c².【证法10】(李锐证明)设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90o, ∴ ∠TBH = ∠ABE. R又∵ ∠BTH = ∠BEA = 90o,BT = BE = b, ∴ RtΔHBT ≌ RtΔABE. ∴ HT = AE = a. ∴ GH = GT―HT = b―a. 又∵ ∠GHF + ∠BHT = 90o, ∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC. ∵ DB = EB―ED = b―a,∠HGF = ∠BDC = 90o,∴ RtΔHGF ≌ RtΔBDC. 即 S₇=S₂.过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90o,可知 ∠ABE= ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌ RtΔABE. 所以RtΔHBT ≌ RtΔQAM . 即 S₈=S₅.由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE.∵ ∠AQM + ∠FQM = 90o,∠BAE + ∠CAR = 90o,∠AQM = ∠BAE, ∴ ∠FQM = ∠CAR.又∵ ∠QMF = ∠ARC = 90o,QM = AR = a,∴ RtΔQMF ≌ RtΔARC. 即S₄=S₆.C²=S₁+S₂+S₃+S₄+S₅, a²=S₁+S₆ b²=S₃+S₇+S₈,又∵ S₇=S₂,S₈=S₅,S₄=S₆,∴a²+b²=S₁+S₆+S₃+S₇+S₈ =S₁+S₄+S₃+S+₂S₅ =c²,即 a²+b²=c².【证法11】(利用切割线定理证明)在 RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90o,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得AC²=AExAD=(AB+BE)(AB-BD) =(c+a)(c-a)= c²-a²,即b²=c²-a²,∴ a²+b²=c².【证法12】(利用多列米定理证明)在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图). 过点A作AD∥CB,过点B作BD∥CA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有ABxDC=ADxBC+ACxBD,∵ AB = DC = c,AD = BC = a, AC = BD = b,∴ AB²=BC²+AC²,即 c²=a²+b².【证法13】(作直角三角形的内切圆证明) 在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r.∵ AE = AF,BF = BD,CD = CE,∴ AC+BC-AB=(AE+CE)+(BD+CD)-(AF+BF) = CE+CD= r + r = 2r,即 a+b-c=2r,∴ a+b=2r+c.∴(a+b)²=(2r+c)²即a²+b²+2ab=4(r²+rc)+c²∵ S△ABE=1/2ab,∴ 2ab=4S△ABE,又∵ S△ABE=S△AOB+S△BOC+S△AOC =1/2cr+1/2ar+1/2br=1/2(a+b+c)r =1/2(2r+c+c)r=r²+rc,∴4(r²+rc)=4S△ABC,∴4(r²+rc= 2ab∴a²+b²+2ab=2ab+c², ∴ a²+b²=c².【证法14】(利用反证法证明)如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.假设a²+b²不等于c².,即假设 AC²+BC²不等于AB²,则由 AB²=ABxAB=AB(AD+BD)=ABxAD+ABxBD22可知 AC²不等于ABxAD,或者 BC²不等于ABxBD. 即 AD:AC≠AC:AB,或者 BD:BC≠BC:AB.在ΔADC和ΔACB中,∵ ∠A = ∠A, ∴ 若 AD:AC≠AC:AB,则∠ADC≠∠ACB. 在ΔCDB和ΔACB中,∵ ∠B = ∠B,∴ 若BD:BC≠BC:AB,则 ∠CDB≠∠ACB.又∵ ∠ACB = 90o,∴ ∠ADC≠90o,∠CDB≠90o.这与作法CD⊥AB矛盾. 所以,AC²+BC²=AB²的假设不能成立.∴ a²+b²=c²【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a、b,斜边的长为c. 作边长是a+b的正方形ABCD. 把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD(a+b)=a²+b²+2ab;把正方形ABCD划分成上方右图所示的几个的面积为C部分,则正方形ABCD的面积为∴ (a+b)²=4x1/2ab+c²=2ab+c²,∴ a²+b²+2ab=2ab+c². ∴a²+b²=c².【证法16】(陈杰证明)设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b上截取ED = a,连结DA、DC,则 AD = c. ∵ EM = EH + HM = b + a , ED = a, ∴(b+a) DM = EM―ED = (b+a)―a = b. 又∵ ∠CMD = 90o,CM = a, ∠AED = 90o, AE = b, ∴ RtΔAED ≌ RtΔDMC. ∴ ∠EAD = ∠MDC,DC = AD = c. ∵ ∠ADE + ∠ADC+ ∠MDC =180o, M∠ADE + ∠MDC = ∠ADE + ∠EAD = 90o,∴ ∠ADC = 90o.∴ 作AB∥DC,CB∥DA,则ABCD是一个边长为c的正方形.∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90o,∴ ∠BAF=∠DAE.连结FB,在ΔABF和ΔADE中,∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE,∴ ΔABF ≌ ΔADE.∴ ∠AFB = ∠AED = 90o,BF = DE = a.∴ 点B、F、G、H在一条直线上.在RtΔABF和RtΔBCG中,∵ AB = BC = c,BF = CG = a,∴ RtΔABF ≌ RtΔBCG . ∵c²=S₂+S₃+S₄+S₅ b²=S₁+S₂+S₆ a²=S₃+S₇ S₁=S₅=S₄=S₆+S₇, ∴a²+b²=S₃+S₇+S₁+S₂+S₆ =S₂+S₃+S₁+(S₆+S₇) =S₂+S₃+S₄+S₅ =c²∴ a²+b²=c².。
本文到此结束,希望对大家有所帮助。
标签:
左右箭头标志(左右箭头)下一篇
最后一页
猜你喜欢
最新文章
- 今日勾股定理16种证明法(勾股定理16种证明方法)
- 2022年8月12日最新消息内容男子救5人遇难 获救者将尽力补偿:蒋正全勇救5人后不幸遇难被救者发声将尽最大的能力来补偿
- 三亚疫情社会面清零了吗 预计多久结束疫情全面解封具体情况详细内容介绍
- 神舟五号发射时间地点视频(神舟五号发射时间)
- 华北电力大学新校区(华北电力大学分数线)
- 规范性文件清理工作汇报(规范性文件清理工作总结)
- 微信怎么用qq找回密码(微信怎么用qq号注册)
- 左右箭头标志(左右箭头)
- lol是什么意思(lol是什么意思)
- 如何进入网站后台管理系统(如何进入网站后台管理系统)
- 房地产销售排名(房地产销售)
- 湘江雅颂居(关于湘江雅颂居当前房价介绍)
- 张国伟被踢出国家队原因是什么个人资料简介显示多大了具体情况详细内容介绍
- 今日最新消息内容 三亚疫情社会面清零了吗 预计多久结束疫情全面解封
- 今日最新消息内容 张国伟被踢出国家队原因是什么个人资料简介显示多大了
- 支付宝电脑版下载官方(支付宝电脑版下载)
- 怎么让电脑屏幕变小(怎么让电脑屏幕变小)
- coreldrawx4sp2精简版安装教程(coreldraw x4 sp2精简增强版)
- 联通无线网密码查询(联通无线网密码怎么改)
- 全尺寸备胎能当正常轮胎用吗(全尺寸备胎)
- 驾照类型车型对照表(驾照类型)
- limited是什么牌子的(limited是什么意思)
- 微众银行官网贷款怎么申请(微众银行官网贷款)
- 激励员工的方法怎么用(激励员工的方法有哪些)