您现在的位置是:首页 > 教育 >正文
墒的读音(墒)
发布时间:2022-08-11 01:06:25狄伯翰来源:
您好,蔡蔡就为大家解答关于墒的读音,墒相信很多小伙伴还不知道,现在让我们一起来看看吧!
1、一、关于熵量增加原理。
2、 1950年,德国物理学家克劳修斯提出了熵的概念。
3、熵就是温比热量,是热量的变化除以绝对温度所得的商,也就是热力学系统平衡态的状态函数。
4、熵量则是无序程度的量度。
5、 克劳修斯提出熵的概念后,进而发现了热力学第二定律,亦称熵量增加原理:dS=dQ/T>0, 其中dS为初态和终态均为平衡态的某过程的熵变,dQ为在此过程中热量的变化,T为温度,不等号>表示不可逆过程。
6、上式中的dQ =-cT,亦即系统中热量的变化。
7、其中c为热容量,符号-表示系统具有负的热容量。
8、事实上,对于某个热力过程,不管初态、终态是否平衡,上式都成立。
9、 可以看出,上式是在无约束的条件下得出的。
10、在这种系统中,各物体是排斥性的,是一种热力扩散性的结构。
11、 按照熵增原理,克劳修斯认为,在一切自然现象中,各种系统都不断地趋向于平衡,趋向于无序,趋向于对称。
12、熵的总量只能永远增加而不能减少。
13、按照熵增原理,宇宙的熵量将趋于极大。
14、宇宙越是接近这个极限状态,那就任何进一步的变化都不会发生了,这时的宇宙将进入一个永恒的死寂状态。
15、这就是所谓的热寂说。
16、克劳修斯的热寂说是在热力扩散性有限系统中建立的熵增原理,任意扩大使用范围,外推到整个宇宙系统的结果。
17、 二、关于熵量减少原理。
18、 2001年,本人发现,在自然约束的引力系统中,粒子的动能小于势能,即E<V/2,其中E为粒子的动能,V为引力势能,V=-GMm/r,G为万有引力常数,M为场源的质量,m为引力场中某粒子的质量,r为粒子到场源中心的距离。
19、上式表明,在约束性的系统中,系统的总能量为负。
20、同时,我们看到,在引力场中,粒子的运动类似于某系统中的热运动,因此,可以用热力学的方法来研究这种运动。
21、用上式代换熵增原理中的热量dQ,代换后的能量V/2的含义与热量dQ的含义相类似。
22、由此,我们得出,在自然约束系统中,存在熵量减少的现象,即有:dS<0,从而发现了熵量减少原理,亦即引力约束系统的热力学定律。
23、 熵减原理是一个与熵增原理相对应的原理。
24、这个熵减原理同克劳修斯的熵增原理并不矛盾。
25、因为前者反映的是自然约束的引力系统的情况,后者反映的是热力扩散的孤立系统的情况。
26、两者在不同的领域里,各自反映了本领域事物发展的客观规律。
27、按照熵减原理,自然约束系统不断地趋向于不平衡,趋向于有序,趋向于不对称。
28、熵减原理指出,在一切引力约束系统中,熵的总量只能减少,而不能增加。
29、进而得出,宇宙引力系统的熵量趋于极小。
30、宇宙越接近于这个极限状态,就越不稳定。
31、在这样的系统中,温度越来越高。
32、这就是所谓的热化说。
33、 三、熵量守恒定律。
34、将熵增原理和熵减原理结合起来,可以得到熵量守恒定律。
35、同质量守恒定律和能量守恒定律是宇宙中的基本定律一样,熵量守恒定律也是宇宙中的一条基本定律。
36、 英国物理学家霍金指出,宇宙中的物质具有正能量,但物质彼此以引力相吸引,而引力具有负能量。
37、在近似均匀的宇宙空间中,负的引力场正好抵消物质所代表的正能量,因此,宇宙的总能量为零。
38、我们发现,熵量和能量有着密切的关系,从而得出,在非均匀的宇宙空间中,在物质较少的区域,物质所代表的正能量将大于场源所产生的负能量,因此,总的能量为正,这是扩散性热力系统熵量增加的原因。
39、在物质较多的区域,场源产生的引力场的负能量将大于物质所具有的正能量,因此,总的能量为负,这是约束性引力系统中熵量减少的原因。
40、从整体看,约束性的引力系统中物质运动的负能量,将抵消扩散性的热力系统中物质运动的正能量,约束性的引力系统熵量的减少,将抵消扩散性热力系统熵量的增加。
41、从整体看,引力约束系统的熵减原理和热力扩散系统的熵增原理,是互补的。
42、将熵减原理与熵增原理结合起来,可以得出,宇宙总的熵量为零,是守恒的。
43、同时,宇宙是熵增和熵减交替的过程,或者说,是热寂和热化交替的过程。
44、这两个过程的交替运行,将使宇宙永远处于充满活力和生机的状态。
45、因此,宇宙是永远不会死寂的。
本文就讲到这里,希望大家会喜欢。
标签:
猜你喜欢
最新文章
- 墒的读音(墒)
- 今日德玛西亚之力怎么出护甲(德玛西亚之力怎么出装顺序)
- 今日免费视频格式转换器哪个好(免费视频格式转换器哪个好)
- 今日手机电容屏修复的简单妙招
- 安全员b证报考条件(安全员b证报考条件)
- 青砖黛瓦形容什么(青砖黛瓦的 ldquo 黛 rdquo 是什么意思)
- 蓝牙键盘怎么连接电脑(蓝牙键盘怎么连接电脑)
- 621797开头是哪个银行(6217)
- 被蝎子蛰了怎么处理最快(被蝎子蛰了怎么处理)
- 蒙牛sap系统登录网址(蒙牛sap系统登录)
- 电商记账报税怎么做(电商记桌面版)
- 喜马拉雅山是哪个国家的山(喜马拉雅山是哪个国家的)
- 斗罗大陆漫画免费阅读最新章节(斗罗大陆小说免费阅读漫画)
- 界龙花苑(关于界龙花苑当前房价介绍)
- 蔡萝莉(蔡其矫)
- 666110是什么电话(6661)
- 明天涨停的股票名单(明天涨停的股票)
- 多多支付用的是哪里的钱(多多卡购买)
- 身先士卒 率先垂范名句(身先士卒 率先垂范 以身作则区别)
- l13j14外墙变形缝(外墙变形缝西南11j112)
- 花千骨的经典句子(花千骨的经典语录)
- 北海市干部在线教育(北海市干部在线教育)
- 巴卫在哪一集亲了奈奈生(巴卫和奈奈生滚床单第几集)
- 中国银行股份有限公司自查(中国银行股吧)